HIERARCHICAL GRAVITATIONAL FRAGMENTATION. I. COLLAPSING CORES WITHIN COLLAPSING CLOUDS
نویسندگان
چکیده
منابع مشابه
Homologously Collapsing Stellar Cores
We investigate the collapse of nonrotating gas sp~eres with a polytropic.equ~tion of state.: n = 3, corresponding toy = 4/3. Such polytropes provide~ re~sonable approximatiOn t<? collapsmg stellar cores during the early phase before nuclear density IS reached. W~ find a.famtl~ of ~xact homologously collapsing configurations. Homologous collapse of the enti~e core Is possib~e If the pressure at ...
متن کاملYSOs in Collapsing Molecular Cloud Cores
The collapse of slowly rotating molecular cloud cores threaded by magnetic fields is investigated by high-resolution numerical simulation. Outflow formation in the collapsing cloud cores is also followed. In the models examined, the cloud core and parent cloud rotate rigidly and are initially threaded by a uniform magnetic field. The simulations show that the cloud core collapses along the magn...
متن کاملMolecular Evolution in Collapsing Prestellar Cores
We have investigated the evolution and distribution of molecules in collapsing prestellar cores via numerical chemical models, adopting the Larson-Penston solution and its delayed analogues to study collapse. Molecular abundances and distributions in a collapsing core are determined by the balance among the dynamical, chemical and adsorption time scales. When the central density nH of a prestel...
متن کاملMolecular Line Profiles of Collapsing Gas Clouds
Emission line profiles of tracer molecule H2CO 140 GHz transition from gravitational core collapsing clouds in the dynamic process of forming protostars are calculated, using a simple ray-tracing radiative transfer model. Three self-similar dynamic insideout core collapse models – the conventional polytropic model, the empirical hybrid model and the isothermal model – for star-forming molecular...
متن کاملGravitational Waves from Collapsing Vacuum Domains
The breaking of an approximate discrete symmetry, the final stages of a first order phase transition, or a postinflationary biased probability distribution for scalar fields are possible cosmological scenarios characterized by the presence of unstable domain wall networks. Combining analytical and numerical techniques, we show that the non-spherical collapse of these domains can be a powerful s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Astrophysical Journal
سال: 2015
ISSN: 1538-4357
DOI: 10.1088/0004-637x/814/1/48